
Phospholipase D-mediated autophagic regulation
is a potential target for cancer therapy

YH Jang1,3, KY Choi2 and DS Min*,1,2

Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient
limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of
phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7,
which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by
differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase
(AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates
major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly
sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for
a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in
the molecular machinery regulating autophagy.
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Autophagy is a tightly regulated process through which
organelles and proteins are sequestered into autophagic
vesicles (autophagosome) within cytosol.1 These vesicles
then fuse with the lysosome, forming autophagolysosomes,
which promote the degradation of intracellular contents.
Expansion of autophagosomes involves the recruitment of
microtubule-associated protein light chain 3 (LC3-I), which is
cleaved and lipidated during the initiation of autophagy. This
lipidated LC3-II translocates to and associates with the
autophagosome in a punctate pattern,2 and remains on
mature autophagosomes until after fusion with lysosomes;
accordingly, it is commonly used to monitor autophagy.3

Autophagy is crucial to maintenance of cellular nutrient and
energy homeostasis and essential to normal development.4

Defects in autophagy are closely associated with numerous
human diseases, including cancer.5,6 In a tumor microenvir-
onment, autophagy can promote cancer cell survival in
response to metabolic stress.7 However, progressive autop-
hagy can also induce cell death, and human cancers often
display inactivating mutations in autophagy-promoting
genes.8 Thus, autophagy is a double-edged sword in
tumorigenesis, acting both as a tumor suppressor and a
protector of cancer cell survival; accordingly, elucidation of its
exact role at different stages of cancer progression and in
treatment responsiveness is a complex and challenging task.

A series of protein complexes composed of autophagy-
related gene (Atg gene) products coordinates the formation of

autophagosomes. The ATG1/ULK1 complex (Atg1 in yeast and
ULK1 in mammals) is an essential positive regulator of auto-
phagosome formation.9 mTOR serves as a major intracellular
hub for integration of autophagy-related signals.10 mTOR
inhibits autophagy initiation by phosphorylating ULK1Ser
757.11 Upstream of mTOR is the cellular energy-sensing
pathway controlled by adenosine monophosphate-activated
protein kinase (AMPK).10 Under glucose starvation, activated
AMPK inhibits mTOR to relieve the phosphorylation of ULK1
Ser757, leading to ULK1-AMPK interaction.11 AMPK then
phosphorylates ULK1 on Ser555, Ser 317 and Ser777,
activates ULK1 kinase, and eventually leads to the induction
of autophagy.11,12 Autophagy is also regulated by Beclin 1
(Atg6), which forms a complex with vacuolar-sorting protein
34 (Vps34), a class III phosphatidylinositol 3-kinase, and
serves as a platform for recruitment of other autophagy-
related proteins that are critical to autophagosome formation.13

Bcl-2 possesses anti-autophagy function in addition to
apoptosis inhibition via physical interaction with Beclin 1.14

During nutrient starvation, JNK1-mediated Bcl-2 phosphorylation
dissociates Beclin1/Bcl-2 complex and induces autophagy.15

Mitogenic activation of mTOR requires the lipid second
messenger phosphatidic acid (PA), which binds to
mTOR.16,17 Phospholipase D (PLD), which catalyzes the
hydrolysis of phosphatidylcholine to PA, has been established
as a key upstream component in the mitogenic mTOR
pathway.18,19 Given the central role for PLD in cell survival,
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it is not surprising that PLD dysregulation has been implicated
in various cancers.18,19 Despite the implications of PLD and
autophagy in cancer-related processes, current evidence
linking these two fields of research is severely limited.

In the present study, we show that PLD1 as a new regulator
of autophagy, coordinates major players of the autophagic
pathway, AMPK-mTOR-ULK1 and the Vps34/Beclin 1 signal-
ing pathway. PLD inhibition promotes autophagic flux. More-
over, PLD1 inhibitor sensitized in vitro and in vivo cancer
regression induced by genetic and pharmacological inhibition
of autophagy. Our findings suggest that regulation of
autophagy signaling networks via PLD1 inhibition provide

rationale for a new therapeutic approach to augment the
efficacy of anticancer regimens.

Results

PLD1 suppresses autophagy. To examine the involve-
ment of PLD1 in autophagy, we used RNA interference
against PLD1. Depletion of PLD1 significantly induced
autophagy in HEK293 and HeLa cells, as indicated by
punctate dots of endogenous LC3 (Figure 1a). p62 is a
protein sequestered in autophagosomes that is lost when
autophagosomes fuse with lysosomes. Thus, an increase of
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Figure 1 PLD1 suppresses both basal and starvation-induced autophagy. (a) HEK293 and HeLa cells were transfected with siRNAs for a control or PLD1, then
immunostained with antibody to LC3. Endogenous LC3 punctate dots were observed by fluorescence microscopy and quantification of the number of LC3 puncta per cell
(three to five cells were counted). Data are representative of three independent experiments. (b) The cells were transfected with siRNA for PLD1. The lysates were then
immunoblotted with the indicated antibodies. The levels of p62 or LC3-II to a-tubulin were quantified by densitometer analysis. (c) Cells were transfected with mRFP-GFP-LC3
and the indicated siRNA for 24 h. The total numbers of RFP-positive/GFP-negative puncta per cell were counted. (d) HeLa cells were transfected with the indicated siRNA and
then fixed and examined by transmission electron microscopy for autophagicvacuoles (AVs). Quantifications based on counting autophagic vacuoles in the field of view. The
values are the mean±S.D. of three independent experiments. (e) HeLa cells were co-transfected with GFP or GFP-PLD1 and RFP-LC3 and then cultured under amino acid
and serum starvation conditions (HBSS media) for 2 or 6 h, after which the percentage of RFP punctate cells relative to the percentage of GFP-expressing cells was
determined. White arrows indicate GFP-PLD1 expressing non-punctate cells. The values are the mean±S.D. of three independent experiments. (f) HeLa cells were
transfected with GFP-PLD1 or GFP vector and then cultured with or without HBSS medium for 6 h. The lysates were immunoblotted with the indicated antibody and the levels
of p62 or LC3-II relative to a-tubulin were quantified by densitometer analysis. Data are representative of three independent experiments
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p62 indicates inhibition of autophagy.20 PLD1 depletion
increased the level of LC3-II and reduced the level of p62
protein (Figure 1b). Moreover, the maturation process
through which autophagosomes are converted into autolyso-
somes can be monitored by the monomeric red fluorescent
protein (mRFP)-GFP tandem fluorescent-tagged LC3 (tfLC3)
method.21 The GFP-LC3 punctate feature of mRFP-GFP
tandem autophagy flux reporter is not detectable in the acidic
pH lysosomal environment by lysosomal hydrolysis, whereas
the mRFP-LC3 punctate feature is still detectable. Our data
showed that knockdown of PLD1 significantly increased the
transition of RFP-GFP/LC3-positive autophagosomes to
RFP-positive, GFP-negative autolysosomes in RFP-GFP/
LC3-transfected cells (Figure 1c), suggesting that depletion
of PLD1 promotes autophagic flux. We further examined the
effect of PLD1 on autophagic flux, based on the ratio of wild
type and autophagy-deficient mutant of renilla luciferase
RLuc-LC3 (LC3WT/LC3G120A).22,23 Both knockdown and
inhibition of PLD1 effectively induced autophagy as evident
from the ratio of luciferase activity of the two RLuc-LC3s
(Supplementary Figures 1a and b). In addition, overexpres-
sion of PLD1 significantly suppressed autophagic flux during
2 or 6 h of starvation (Supplementary Figure 1c). These data
strengthen that PLD1 inhibition promotes autophagy flux.
Furthermore, PLD1 depletion revealed a significant increase
in the number of autophagic vacuoles as analyzed by
transmission electron microscopy (TEM; Figure 1d). We also
observed autophagy proceeding in PLD1 knockout mouse
embryonic fibroblasts (MEFs; Supplementary Figures 2a and
b). Ectopic expression of GFP-PLD1 decreased autophagy
induced by 2 or 6 h of starvation, as measured by the
accumulation of GFP-positive RFP-LC3 puncta (Figure 1f).
In addition, overexpression of PLD1 reduced the level of
LC3-II and increased the level of p62 (Figure 1g). Moreover,
LC3-II induced by silencing of PLD1 was suppressed
by overexpression of PLD1 (Supplementary Figure 3). We
measured the degradation of long-lived proteins in PLD1-
depleted cells. This assay provides a functional readout as
autophagy is the major pathway through which many of these
proteins are degraded. Significant increase in the degrada-
tion of long-lived proteins was detected by PLD1-depleted
cells, compared with that of control siRNA cells (Supplementary
Figure 4), demonstrating that knock-down of PLD1
stimulates the autophagic pathway with increased protein
turnover. Endogenous and exogenous PLD1 activity were
increased for 2 h of starvation and thereafter (6 h, 12 h)
decreased (Supplementary Figure 5). Thus, it seems that
decreased activity of PLD1 for prolonged starvation pro-
motes autophagy. In addition, ectopic expression of PLD2
suppressed autophagy as measured by the accumulation of
GFP-positive RFP-LC3 puncta (Supplementary Figure 6).
Taken together, these results suggest that PLD1 negatively
regulates autophagy.

Enzymatic activity of PLD is involved in the regulation of
autophagy. To examine whether PLD activity is involved in
autophagy, we co-transfected RFP-LC3 with wild-type
GFP-PLD1 or a catalytically inactive mutant form of PLD1,
GFP-PLD1K898R(KRM-PLD1). Expression of PLD1wt, but not
PLD1K898R, significantly inhibited GFP-positive RFP-LC3

puncta formation (Figure 2a), suggesting the involvement
of PLD activity in the regulation of autophagy. Moreover, PA
significantly suppressed starvation-induced autophagy as
analyzed by mRFP-GFP tandem LC3 punctate (RFP-
positive, GFP-negative puncta) formation (Figure 2b) and
LC3-II level in HeLa cells (Figure 2c). Furthermore, PLD1
inhibition significantly increased autophagy under both basal
conditions and starvation (Figure 2d). PA suppressed PLD1
inhibitor-induced autophagy (Supplementary Figure 7).
Under basal conditions, PLD1 inhibition enhanced the level
of LC3-II protein in a variety of cells (Figure 2e), suggesting
that PLD1 inhibitor-induced autophagy is a general phenom-
enon. In addition, PLD inhibition increased the level of LC3-II
protein in a dose- or time-dependent manner (Supplementary
Figure 8), and increased the formation of autophagic
vacuoles as analyzed by TEM (Figure 2f). The accumulation
of LC3-II is not only a consequence of the LC3-I to LC3-II
conversion, but also of an increase in LC3 synthesis. Thus,
we examined whether PLD1 affects expression level of LC3
during starvation. Although starvation of 2 and 6 h induced
mRNA level of LC3, ectopic expression of PLD1 and PLD1
inhibition did not affect expression of LC3 (Supplementary
Figure 9). Taken together, these data indicate that the
enzymatic activity of PLD1 is involved in the inhibition of
autophagy.

Mechanisms of enhanced autophagic vacuolization by
PLD1 inhibition. To understand the regulation of the
autophagic pathway by PLD1, we examined whether PLD1
inhibition is dependent on Atg genes. To accomplish this, we
used isogenic MEF deficient for the essential autophagy
genes, Atg5 or Atg7, which were completely defective for
autophagy.24,25 RFP-LC3 puncta and LC3-II level induced by
knockdown of PLD1 or PLD1 inhibition were dramatically
suppressed in Atg5 and Atg7 null MEF (Figures 3a–d). The
accumulation of autophagosomes and autolysosomesin
response to inhibition or depletion of PLD1 could involve
enhanced autophagic sequestration (on-rate) or reduced
degradation of autophagic material by fusion with lysosomes
(off-rate). To distinguish between these possibilities, we
assessed PLD1 inhibitor-induced autophagic vacuolization
by monitoring colocalization of the autophagic marker, GFP-
LC3, with the lysosomal marker, Lamp-1, in the presence or
absence of bafilomycin A1 (Baf A1), which is known to inhibit
fusion between autophagosomes and lysosomes.3 PLD1
inhibitor, but not Baf A1, induced colocalization between
Lamp-1 and LC3, suggesting that autophagosomes encoun-
ter lysosomes in PLD1 inhibitor-treated cells (Figure 3e). In
addition, PLD1 inhibitor but not Baf A1 increased autophagic
flux as measured by the formation of RFP-positive, GFP-
negative puncta (Supplementary Figure 10a). However,
exogenous PLD1 significantly suppressed the colocalization
between Lamp-1 and LC3 under both 2 and 6 h of starvation
conditions (Supplementary Figure 10b). To obtain a better
determination of the inhibitory effect of PLD1 on the
formation of autophagosomes, we analyzed the kinetics of
LC3-II synthesis. Overexpression of PLD1 greatly reduced
LC3-II biosynthesis by Baf A1 treatment at two time points,
compared with that of control cells, indicating that fewer
autophagsomes are formed in cells overexpressing PLD1,
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and thus PLD1 has an inhibitory effect on autophagosome
formation (Supplementary Figure 10c). Furthermore, Baf A1
increased the PLD1 inhibitor-triggered induction of LC3-II
(Figure 3f). These data suggest that PLD1 inhibition
increases the on-rate of autophagy, at least in vitro.

PLD1 regulates autophagy through mTOR/AMPK/ULK1-
mediated pathways and modulation of interaction of
Vps34 with Beclin-1. Autophagy is controlled by several
kinases including mTOR, a negative regulator of autophagy,26

and AMPK, a positive regulator of autophagy.27 PLD1
depletion suppressed the phosphorylation of mTOR and
S6K, a downstream target of mTOR (Figure 4a, left panel).
Moreover, PLD1 inhibitor suppressed activation of mTOR
and S6K (Figure 4a, right panel). Overexpression of PLD1
recovered the phosphorylation of mTOR and S6K reduced by
nutrient starvation (Figure 4b). Inhibition of mTOR kinase by
rapamycin and PLD1 inhibitor induced autophagy as indicated

by mRFP-GFP tandem LC3 punctate formation (Figure 4c).
Cotreatment did not further increase autophagy, compared
with that of each treatment, suggesting that PLD1 inhibition
induces autophagy through the mTOR-mediated pathway.
Interestingly, PLD1 inhibition increased both phosphorylation
of AMPK (Thr172) and phosphorylation of ULK1 Ser555,
which is mediated by AMPK, in a time-dependent manner,
whereas PLD1 inhibition suppressed phosphorylation of
ULK1 Ser757 mediated by mTOR (Figure 4d). We further
used siRNA approach to exclude an off-target effect of the
inhibitor. The effect of PLD1 siRNA on the phosphorylation of
AMPK and ULK1 was comparable with that of PLD1
inhibition (Figure 4e). Moreover, PLD1 inhibition dramatically
suppressed the level of LC3-II (Figure 4f) and RFP-LC3
puncta in Ulk1� /� MEF (Figure 4g). These data suggest that
PLD1 inhibition induces autophagy through activation of
AMPK-ULK1 (Ser555 phosphorylation) and suppression of
mTOR-ULK1 (Ser757 phosphorylation).
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Beclin 1 has a critical role in the initiation of autophagy and
its complex interactome has a major effect on the positive and
negative regulation of autophagy.28 Bcl-2 interacts with

Beclin 1 and suppresses autophagy.14 Importantly, the
phosphorylation status of Bcl-2 can interfere with this
autophagy-regulating interaction. JNK1-mediated Bcl-2
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phosphorylation dissociates Beclin 1/Bcl-2 complex and
induces autophagy.13

PLD1 inhibition greatly increased phosphorylation of JNK
and disrupted the interaction between exogenous and
endogenous Beclin 1 and Bcl2 in complete media (Figures
5a and b). PA decreased phosphorylation of JNK and
increased endogenous association of Beclin 1 with Bcl-2 in
starved cells (Figure 5c). Overexpression of PLD1 also
increased interaction between these two proteins in starved

cells (Figure 5d). The interaction between Beclin 1 and Vps34
is known to induce autophagy.29,30 PLD1 inhibition signi-
ficantly increased Beclin1/Vps34 complex formation
(Figure 5e), whereas expression of PLD1 greatly decreased
association between Beclin 1 and Vps34 in starved cells
(Figure 5f). These findings suggest that PLD1 activity is
involved in regulation of the interaction of Beclin1 with Vps34
or Bcl2. Taken together, these data indicate that PLD1 supp-
resses autophagy through the AMPK-mTOR-ULK1-mediated
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pathway and modulation of the interaction of Beclin 1 with
Vps34 or Bcl2.

PLD1 inhibition sensitizes cell death via genetic and
pharmacological inhibition of autophagy. Many studies
have shown that genetic knockdown of Atgs or pharmaco-
logical inhibition of autophagy can effectively enhance tumor
cell death induced by diverse anticancer drugs in preclinical
models.31–33 Thus, we examined whether PLD1 inhibition
induces cell death with respect to autophagy. Under
starvation conditions, PLD1 inhibition significantly sensitized

cell death in Atg5� /� MEF (Supplementary Figure 11a). We
next used Atg5þ /þand Atg5–/– RasV12/T-large antigen-
transformed MEF.34 Propidium iodide (PI) staining revealed
that PLD1 inhibition significantly enhanced starvation-induced
cell death in Atg5–/–RasV12/T-large antigen-transformed
MEF when compared with that of Atg5þ /þ MEF
(Figure 6a). PLD1 inhibition also dramatically increased
caspase 3 activation in Atg5–/–RasV12/T-large antigen-
transformed MEF, but not in Atg5þ /þ MEF (Figure 6b).
Moreover, PLD1 inhibition significantly increased cell
death in Atg7-depleted MDA-MB231 breast cancer cells
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(Figures 6c and d). In addition, we used MEF cells lacking
Atg7.25 Comparison of the wild-type and Atg7� /� MEF
provided a cleaner test than that using RNAi, addressing the
concern for off-target effects that may plague siRNA knock-
down. PLD1 inhibition significantly induced cell death in
Atg7� /� MEF, but not Atg7þ /þMEF (Supplementary
Figure 11b). The level of LC3-II and caspase 3 activation
by PLD1 inhibition in Atg7� /� MEF were also comparable
with those of ATG7-depleted MDA-MB-231 cells
(Supplementary Figure 11c). These results suggest that
PLD1 inhibition increases cell death when autophagy is
genetically inhibited. The inhibition of autophagy combined
with chemotherapy can enhance treatment efficacy by
inhibiting stress adaptation and increasing cell death. Thus,
we investigated the effects of the late-stage inhibitors of
autophagy, chloroquine (CQ: lysosomotropic drug that
prevents acidification of the lysosomal compartment) and
Baf A1. Combined treatment of HeLa cells with Baf A1 or CQ
with PLD1 inhibitor significantly sensitized cell death under
normal and starvation conditions (Figures 6e–h). Taken
together, these data suggest that PLD1 inhibitor efficiently
sensitizes cell death via genetic and pharmacological
inhibition of autophagy.

PLD1 inhibitor synergizes with genetic inhibition of
autophagy and clinical inhibitor of autophagosome
maturation to induce apoptosis in vivo. To determine
the in vivo relevance of PLD1 inhibitor antitumoral action with
respect to autophagy, we investigated whether PLD1
inhibition promotes activation of the autophagy-mediated
cell death pathway in Atg5þ /þ and Atg5–/–RasV12/T-large
antigen-transformed MEF-derived tumor xenografts. Admin-
istration of PLD1 inhibitor significantly reduced the growth
and weight of tumors derived from Atg5-deficient cells when
compared with that of Atg5þ /þ -derived cells (Figure 7a).
Furthermore, administration of PLD1 inhibitor greatly
increased apoptosis in Atg5� /� , but not in Atg5þ /þ tumors
(Figures 7b–d). CQ, a drug that blocks autophagosome
maturation, is a well-established clinical antimalarial agent
that is also known to augment cell death and/or tumor
regression.33–35 To translate these results to an in vivo
setting, we established xenografts from A549 lung cancer
cells. The combination of PLD1 inhibitor and CQ led to
significant tumor regression when compared with monother-
apy (Figure 8a). The combination treatment induced a
marked increase in apoptosis (Figures 8b and c), and
reduced the expression of Ki67, a proliferation marker
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Figure 7 PLD1 inhibitor sensitizes in vivo cancer regression via genetic inhibition of autophagy. (a) Growth inhibition of Atg5þ /þand Atg5–/–RasV12/T-large antigen-
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(Figure 8d). Similarly, combinational therapy led to greatly
increased levels of LC3-II and active caspase-3 (Figure 8e).
Considering the efficacy of combinational therapy using
PLD1 inhibitor and CQ, small molecules targeting PLD1 may
offer a translatable approach to cancer therapy in the future.
Taken together, these findings demonstrate that PLD1
inhibitor synergizes with genetic inhibition of autophagy and
clinical inhibitor of autophagosome maturation to induce
apoptosis in vivo.

Discussion

In the present study, we demonstrate PLD as a new player in
the molecular machinery regulating autophagy. Modulation of
autophagy may represent a new paradigm for cancer
treatment that is relevant to both conventional cytotoxic drugs
and targeted agents. The role of autophagy in cancer and
treatment responsiveness is undoubtedly complicated.
Although tumor cell susceptibility to autophagy may depend
on tumor genotype and the therapeutic agents utilized, the
available data are limited and it is not clear whether such a

strategy will be clinically beneficial.36 The present study
strongly suggests that PLD1 suppresses autophagy and that
PLD1 inhibition augments the efficacy of anticancer regimens
via facilitation of autophagic pathways. PLD2 also seems to
have the same effect and thus it would appear that both PLDs
are able to modulate autophagy. Overexpression of PLD has
been reported to protect cancer cells from apoptosis,37 and
aberrant activation/expression of PLD has been widely
implicated in a variety of cancers.18,19

PLD1 inhibition led to a great increase in the level of LC3-II
protein in a variety of cells, and PA suppressed starvation-
induced autophagy, suggesting that PLD activity has a
negative role in autophagy. To assess whether LC3-II
formation is altered by perturbation, one can assess its level
in the presence of Baf A1, which inhibits LC3-II degradation
by blocking autophagosome-lysosome fusion.38 Therefore,
differences in LC3-II levels in response to particular conditions
in the presence of Baf A1 reflect changes in autophagosome
synthesis. We demonstrated that PLD1 inhibition increased
the on-rate of autophagy, at least in vitro. PLD1 knockdown-
induced autophagy follows a canonical autophagic pathway
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via Atg1(Ulk1), Atg5 or Atg7. Given the critical role of mTOR
signaling in regulation of autophagy, it is not be surprising to
find that depletion and inhibition of PLD induces autophagy via
suppression of mTOR. Expression of PLD1 abrogated the
accumulation of GFP-LC3 dots observed in sphingosine
kinase 1-overexpressing cells, which stimulate autophagy,
whereas expression of catalytically inactive mutant of PLD1
did not inhibit autophagy induced by overexpression of
sphingosine kinase 1.39 On the contrary, the opposite effect
of PLD1 on autophagy (i.e., positive regulation of autophagy
through PLD1) has been reported.40 A major difference
between the findings of the study reported here and of that
reported by Dall’Armi is the incubation time used when
investigating autophagy in starved HeLa cells (6 versus 2 hs,
respectively).40 We observed that PLD1 suppressed auto-
phagy flux both a shorter period (2 h) and long period
(6 h, 12 h) of starvation. PLD1 activity was increased for 2 h
of starvation and thereafter (6 h, 12 h) decreased. Thus,
it seems that decreased activity of PLD1 for prolonged
starvation promotes autophagy.

The proteolysis of long-lived proteins by macroautophagy is
a standard, specific measure of autophagic degradation and
represents an end-point assay for the pathway. We observed
significant increase in the degradation of long-lived proteins in
PLD1-depleted cells, indicating that knock-down of PLD1
stimulates the autophagic pathway.

Although activation of mTOR suppresses autophagy, PLD1
may function as both a positive and negative modulator of the
autophagy pathway, depending on its subcellular localization,
the cell state and the experimental conditions. p53 has also a
dual role in autophagy regulation: p53 induces autophagy
through mTOR inhibition41 or transcriptional activation of the
autophagy-inducing protein, DRAM,42 in the context of DNA
damage or p53 overexpression, whereas baseline or physio-
logical levels of p53 can inhibit autophagy in other cellular
contexts with enhanced mTOR activity by p53.43 Thus,
modulation of autophagy might be dependent on the cellular
context. Such a dual role also has been described for Vps34, a
lipid enzyme that is required for autophagy, but also
stimulates mTOR.44,45 Furthermore, it has been suggested
that PLD1 has a novel role in transducing amino-acid signals
to activate mTORC1 via the Vps34-phosphatidylinositol-3-
phosphate-PLD1 pathway.46 Thus, it is suggested that PLD1
might have a dual role on autophagy depending on cell
contexts and its subcellular localization. Further studies will be
required for understanding the mechanism for a dual role of
PLD1 on autophagy.

The initiation step in the autophagy process is highly
regulated, involving key signaling molecules that function
as a macromolecular complex, the best characterized
being the Beclin 1-Vps34, AMPK-ULK1 and ULK1-mTOR
complexes.38,47 Bcl2 is also involved in the inhibition of
autophagy via binding to Beclin 1 and negatively regulating
the autophagy-promoting Beclin 1/Vps34 complex.14

Dissociation of Beclin 1 from Bcl-2, and thus activation of
autophagy, in response to nutrient limitation depends on Bcl-2
phosphorylation by the starvation-activated JNK.24 Our study
suggests a model in which PLD1 inhibition promotes
autophagy by releasing Beclin 1 from its association with
Bc1-2 via phosphorylation of JNK to form a complex with

Vps34. PLD1 may be a critical regulator of autophagy by
coordinating the major players of autophagy, the AMPK-
mTOR-ULK1 and Vps34/Beclin 1 signaling pathways. Our
results add to an increasingly complex homeostatic regulation
in which mTOR and autophagy are interconnected.

Multiple studies have shown that genetic knockdown of
Atgs or pharmacological inhibition of autophagy can effec-
tively enhance tumor cell death induced by diverse anticancer
drugs in preclinical models.33 Although autophagy is a
potential mechanism by which PLD1 inhibition restricts tumor
growth, it may also provide temporary relief from the stress
imposed by PLD1 inhibition. Rab9 GTPase, which regulates
secretory and endocytic membrane traffic, is an essential
protein for membrane expansion and fusion in alternative
macroautophagy, but not in conventional macroautophagy.48

Recently, it was suggested that macroautophagy can occur
through at least two different pathways: an Atg5/Atg7-
dependent pathway and an Atg5/Atg7-independent alterna-
tive non-canonical pathway.48,49 Although lipidation of LC3 is
accepted to be a good indicator of macroautophagy, it did
not occur during the Atg5/Atg7-independent alternative
macroautophagy. Unlike conventional macroautophagy,
autophagosomes seemed to be generated in a Rab9-
dependent manner by the fusion of the phagophore with
vesicles derived from the trans-Golgi and late endosomes.
Thus, macroautophagy is more complex than previously
realized. Thus, it could be possible that PLD1 inhibition might
sensitize death of Atg5/7-defective cells via Atg5/Atg7-
independent pathways. We examined whether or not PLD1
inhibition induces Rab9-positive autophagic vacuolization by
monitoring co-localization of RFP-Rab9 with Lamp-1, which is
the late endosomal/lysosomal marker and not solely a marker
of lysosomes. Interestingly, wild-type Rab9 but not dominant
negative Rab9 (Rab9S12N), colocalized with GFP-Lamp-1
under starvation condition (Supplementary Figure 12a), sug-
gesting that PLD1 inhibition might induce Rab9-positive
autophagic vacuolization. Next, we examined whether PLD1
regulates cell death via Rab9, independent of Atg5/7 pathway.
Under starvation condition, Atg5þ /þ and Atg5� /� MEF were
transfected with siRNA for Rab9, and then treated with PLD1
inhibitor. Knockdown of Rab9 showed much more resistance
against PLD1 inhibitor-induced death of Atg5� /� MEF,
compared with that of scrambled Rab9 (Supplementary
Figures 12b and c), indicating that PLD1 inhibition can
regulate cell death via Rab9-mediated pathway, which could
be independent of autophagy. Although we do not provide any
direct evidence for an alternative form of autophagy, it could
be possible that alternative forms of autophagy do indeed
have a role in the regulation of PLD1-mediated cell death.
A direct evidence and more detailed picture of the pathophy-
siological relevance for alternative macroautophagy regulated
by PLD should be investigated in the future study.

Lysosomotropic agents have shown anticancer activity
either alone or in combination with other therapeutic
agents.32,35,50 PLD1 inhibition-induced autophagy can be
exploited using lysosomotropic agents, such as the well-
tolerated drug CQ, to promote cell death in vitro and tumor
remission in vivo. The complex role of autophagy in
tumorigenesis and treatment responsiveness makes it difficult
to decipher how to universally modulate autophagy for
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maximum therapeutic benefit, indicating that context- and cell
type-specific approaches may be required. Thus, context-
specific pharmacologic autophagy modulation holds great
promise as a novel therapeutic approach, adding another
weapon to the currently available armamentarium against
cancer.

Indeed, our results suggest that blocking autophagy can be
detrimental to cancer cell survival when autophagy is activated,
providing a novel role for PLD in the molecular machinery
regulating autophagy and rationale for a new therapeutic
approach to enhance the anticancer efficacy of PLD inhibition.

Materials and Methods
Cell lines and materials. HEK293, HeLa, A549, MCF10A, MDAMB231,
DLD1, MEF, CHO and HN33 cells were cultured at 37 1C in DMEM (Invitrogen,
Carlsbad, CA, USA) containing 10% fetal bovine serum and 1% antibiotic-antimycotic.
ATG7-depleted MBA-MB231 stable cells were generated using shRNA for ATG7.
Pld1 knockout mice were provided by Dr. G Paolo (Columbia University) and MEF
were prepared. Tet-off Atg5 MEF were provided by Dr. N. Misushima (Tokyo
Medical and Dental University), Atg5þ /þandAtg5–/– RasV12/T-large antigen MEF
were provided by Dr. G. Velasco (School of Biology, Complutense University),
Atg7þ /þ and Atg7–/– MEF were provided by Dr. M. Komatsu (Tokyo Metropolitan
Institute of Medical Science) and Ulk1þ /þ and Ulk1–/– MEF were provided by
Dr. M. Kundu (St. Jude Children’s Hospital). Cells were grown to 60% confluence for
transient transfection using Lipofectamine Plus (Invitrogen) according to the
manufacturer’s instructions. PLD1 inhibitor (VU0155069) was purchased from
Cayman Chemical (AnnArbor, MI, USA). CQ and bafilomycin1 (Baf A1) were
obtained from Sigma (Beverly, MA, USA). The siRNAs of corresponding to human
PLD1 sequences (nucleotides 1571–1591, 50-AAGGUGGGACGACAAUGAGCA-30).

PLD activity assay. For measurement of PLD activity, cells were labeled with
[3H]myristic acid, and PLD activity was assessed by measurement of the formation
of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation,
in the presence of 1-butanol, as previously described.51

Western blotting and immunoprecipitation. Cell lysates were
analyzed by immunoblot and/or immunoprecipitation as previously described.52

Enhanced chemiluminescence was used for signal detection. The following
antibodies were used: anti-tubulin (Sigma), anti-GFP (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-active caspase3 (Cell Signaling, Danvers, MA, USA),
Ki67 (Cell Signaling), phospho-mTOR (Ser2448, Cell Signaling), phospho-S6K1
(Thr389, Cell Signaling), phospho-AMPK (Thr172, Cell Signaling), AMPK
(Cell Signaling), LC3B (Cell Signaling), p62 (Cell Signaling), phospho-ULK1
(Ser555/Ser757, Cell Signaling), ULK1 (Cell Signaling), ATG5 (Santa Cruz
Biotechnology) and ATG7 (Abcam, Cambridge, MA, USA). Rabbit polyclonal
anti-PLD antibody that recognizes both PLD1 and PLD2 were generated as
previously described.37

Fluorescence microscopy. Cells were transfected with various PLD1
constructs and incubated with media containing 1 mg/ml Hoechst (Invitrogen) for
20 min. Cells were visualized and the images were collected using a fluorescence
microscope (Axiovert200 M, Zeiss, Wetzlar, Germany) and a confocal fluorescence
microscope (LXM510, Zeiss).

Autophagy analysis by LC3 monitoring. To monitor the formation of
GFP-LC3 puncta, cells were transiently transfected with GFP-LC3 and then
cultured under nutrient starvation conditions such as on HBSS (Hank’s Buffered
Salt Solution; amino acid-free medium).The cells were then fixed with 4%
paraformaldehyde for fluorescence microscopy. Quantification of autophagic
vacuoles was analyzed by calculating the numbers of LC3 puncta (endogenous
LC3, RFP-LC3, RFPþ /GFPþ LC3 or RFPþ /GFP� LC3 from some fields
containing more than 3–5 randomly selected cells in the microscopy-captured
images). RFP-LC3 was provided by Dr. Colombo (Universidad Nacional de Cuyo,
Mendoza, Argentina) and mRFP-GFP-LC3 was provided by Dr. T. Yoshimori
(Research Institute for Microbial Diseases, Osaka University). LC3WT and
LC3G120A were kindly provided by Dr. Marja Jäättelä (Apoptosis Department and
Centre for Genotoxic Stress Research, Denmark).

Cell death analysis. Cell death was measured by staining with PI
(1 mg/ml, Invitrogen) that was added directly to the culture medium. Cells were
photographed under both phase contrast and fluorescent conditions. The PI-positive
cells were expressed as a percentage of the total number of cells (200 counted
under phase contrast).

Electron microscopy. The material was pre-fixed with 2.5% glutaraldehyde
(4 1C, phosphate buffer, pH 7.2) and post-fixed with 1% osmuim tetroxide in the
same buffer. The material was then dehydrated with a series of the graded ethyl
alcohol and embedded in epoxy resin (Epon 812 mixture). Thick sections (1mm)
were subsequently stained with 1% toluidine blue for light microscopy. In addition,
thin sections (50–60 nm) were prepared using an ultramicrotome (Leica, Reichert
SuperNova, Heidelberg, Germany), double stained with uranyl acetate and
lead citrate and then examined using a transmission electron microscope
(JEM1200EX-II, JEOL, Tokyo, Japan).

Xenograft study. A mouse xenograft model was established using 6-week
old BALB/c nude mice (Central Lab Animal Inc., Seoul, Korea). Tumor cells
(5� 106 Ras/T-antigen-MEF transformed or A549 cells) were suspended in 0.1 ml
of serum-free medium and then injected subcutaneously into the upper flank of
each nude mouse. Two weeks after inoculation, CQ (10 mg/kg) and/or PLD1
inhibitor (5 mg/kg) were subjected to intraperitoneal injection three times a week.
After xenografts started growing, the volume and weight of the tumors were
measured. The animal protocol used in this study was reviewed by the Pusan
National University–Institutional Animal Care and Use Committee for ethical
procedures and scientific care and approved (approval number PNU-2009- 0024).

Immunohistochemistry. The paraffin-embedded sections were cleared
and each section was deparaffinized by three changes of xylene for 5 min each,
rehydrated in a graded series of ethanol (100–70%) and then washed with tap
water. After hydration in PBS, endogenous peroxidase was depleted with 0.3%
H2O2 for 10 min at room temperature. The samples were then blocked with 3%
H2O2 for 10 min and washed with PBS several times. After washing, the samples
were further blocked with normal horse serum for 10 min at room temperature and
then incubated first with specific antibody, then with secondary antibodies. Next,
the samples were biotinylated and visualized by the avidin-biotinylated enzyme
complex (ABC) technique using the Vectastain ABC kit (Vector Laboratories,
Burlingame, CA, USA) and subsequent 3,3-diaminobenzidine (DAB) staining (DAB
substrate kit, Vector Laboratories), followed by counterstaining of the nuclei with
hematoxylin. The primary antibodies were performed using LC3B (Cell signaling),
active caspase3 (Santa Cruz Biotechnology, CA, USA) and Ki67 (Abcam). Tissue
TUNEL assays were performed using an ApopTag Peroxidase In Situ Apoptosis
Detection Kit (Millipore, Billerica, MA, USA).

Statistical analysis. Results are expressed as the mean±S.D. of the
number of determinations indicated. Statistical significance of differences was
determined by analysis of variance. A P o0.01 was considered to indicate
significance.
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